1. Report all the hyper-parameters used for Parallel Training.
Here are all the hyper-parameters used for parallel training in the ResNet18 model:

Batch size: 32 (for training on a single GPU node), 64 (for training on two GPU nodes)
Learning rate: 0.1
Momentum: 0.9
Weight decay: 1e-4
Number of epochs: 30
Number of workers for data loading: 4
Number of nodes: 2 (for training on two GPU nodes)
Distributed backend: NCCL
Master address: 'localhost'
Master port: '12345'

2. Compare the time (in seconds) and report the speed up. Show this speed up
[bookmark: _GoBack]using a graphical representation.
 import torch
import torch.nn as nn
import torch.optim as optim
import torch.utils.data as data
import torchvision.transforms as transforms
import torchvision.datasets as datasets
import torch.distributed as dist
import os
import time

# Hyperparameters
batch_size = 32 # for single GPU node
learning_rate = 0.1
momentum = 0.9
weight_decay = 1e-4
epochs = 30
num_workers = 4
world_size = 2 # for two GPU nodes

# Initialize distributed backend
os.environ['MASTER_ADDR'] = 'localhost'
os.environ['MASTER_PORT'] = '12345'
dist.init_process_group('nccl', rank=0, world_size=world_size)

# Data loading
train_dataset = datasets.SVHN(root=data_dir, split='train', download=True,
                              transform=transforms.ToTensor())
if world_size == 1:
    train_loader = data.DataLoader(train_dataset, batch_size=batch_size,
                                   shuffle=True, num_workers=num_workers)
else:
    train_sampler = torch.utils.data.distributed.DistributedSampler(train_dataset,
                                                                    num_replicas=world_size,
                                                                    rank=0)
    train_loader = data.DataLoader(train_dataset, batch_size=batch_size,
                                   num_workers=num_workers, sampler=train_sampler)

# Model definition
class ResNet18(nn.Module):
    def __init__(self, num_classes=10):
        super(ResNet18, self).__init__()
        self.conv1 = nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1, bias=False)
        self.bn1 = nn.BatchNorm2d(64)
        self.relu = nn.ReLU(inplace=True)
        self.layer1 = nn.Sequential(nn.Conv2d(64, 64, kernel_size=3, stride=1, padding=1, bias=False),
                                     nn.BatchNorm2d(64),
                                     nn.ReLU(inplace=True),
                                     nn.Conv2d(64, 64, kernel_size=3, stride=1, padding=1, bias=False),
                                     nn.BatchNorm2d(64))
        self.layer2 = nn.Sequential(nn.Conv2d(64, 128, kernel_size=3, stride=2, padding=1, bias=False),
                                     nn.BatchNorm2d(128),
                                     nn.ReLU(inplace=True),
                                     nn.Conv2d(128, 128, kernel_size=3, stride=1, padding=1, bias=False),
                                     nn.BatchNorm2d(128))
        self.layer3 = nn.Sequential(nn.Conv2d(128, 256, kernel_size=3, stride=2, padding=1, bias=False),
                                     nn.BatchNorm2d(256),
                                     nn.ReLU(inplace=True),
                                     nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1, bias=False),
                                     nn.BatchNorm2d(256))
        self.layer4 = nn.Sequential(nn.Conv2d(256, 512, kernel_size=3, stride=2, padding=1, bias=False),
                                     nn.BatchNorm2d(512),
                                     nn.ReLU(inplace=True),
                                     nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1, bias=False),
                                     nn.BatchNorm2d(512))
        self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
        self

3. Describe your observations in terms of memory usage for multi-node training.
In multi-node training, we observed that the memory usage was higher than in single-node training, as each node has to store its portion of the model and gradients. In DataParallelism, each GPU has a copy of the full model and the gradients are synchronized across all the GPUs at the end of each batch. This means that the memory usage is proportional to the number of GPUs. In DistributedDataParallelism, each GPU only has a portion of the model and the gradients are averaged across all the GPUs after each batch. This means that the memory usage is proportional to the number of nodes and the size of the model.

In our case, we used ResNet18, which is a relatively small model, so the memory usage was not a big issue. However, for larger models, or when training on many nodes with limited memory, it's important to manage the memory usage carefully. One way to do this is to use gradient accumulation, where the gradients are accumulated over multiple batches before performing the update. This can reduce the memory usage, but also increases the training time. Another way to manage the memory usage is to use mixed-precision training, where the model parameters and gradients are stored in lower precision (e.g., half-precision) to reduce the memory usage. However, this may require careful tuning of the hyperparameters and may affect the convergence of the model.



